Two-Directional Tuning of Distributed Feedback Film Dye Laser Devices

نویسندگان

  • Hongtao Feng
  • Weiliang Shu
  • Hong Xu
  • Baoyue Zhang
  • Bin Huang
  • Jingjing Wang
  • Wei Jin
  • Yan Chen
چکیده

We demonstrate a two-directional tuning method of distributed feedback (DFB) film dye laser devices to achieve high quality lasing and a large tuning range. In this work, we proposed a simple method to fabricate a continuous tunable solid-state dye laser on a flexible Polydimethylsiloxane (PDMS) film. In order to obtain stable and tunable output lasing, the stretching property of the gelatine host was improved by mixing with a certain ratio of glycerol to prevent DFB cavity destruction. We employed two different tuning strategies of the DFB film dye lasers, by stretching the PDMS film in two perpendicular directions, and a nearly 40 nm tuning range in each direction was achieved. The laser device maintained single mode lasing with 0.12 nm linewidth during the tuning process. The reported tunable DFB film dye laser devices have huge potential as coherent light sources for sensing and spectroscopy applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Organic Solid-State Tri-Wavelength Lasing from Holographic Polymer-Dispersed Liquid Crystal and a Distributed Feedback Laser with a Doped Laser Dye and a Semiconducting Polymer Film

Organic solid-state tri-wavelength lasing was demonstrated from dye-doped holographic polymer-dispersed liquid crystal (HPDLC) distributed feedback (DFB) laser with semiconducting polymer poly[-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene-vinylene] (MEH-PPV) and laser dye [4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran] (DCM) by a one-step holography technique, which centered a...

متن کامل

Enhancing the laser power by stacking multiple dye-doped chiral polymer films.

We demonstrate a method for enhancing the laser efficiency by stacking multiple dye-doped chiral polymer films. No laser emission was observed from a single 8 mum film. By stacking two films together, the laser efficiency is dramatically enhanced. Further increasing the number of stacked films, the output laser power is further increased. It is also observed that the output laser power in the f...

متن کامل

Microfluidic tuning of distributed feedback quantum cascade lasers.

In this Letter, we report the tuning of the emission wavelength of a single mode distributed feedback quantum cascade laser by modifying the mode effective refractive index using fluids. A fabrication procedure to encapsulate the devices in polymers for microfluidic delivery is also presented. The integration of microfluidics with semiconductor laser (optofluidics) is promising for new compact ...

متن کامل

Optically pumped distributed feedback dye lasing with slide-coated TiO₂ inverse-opal slab as Bragg reflector.

We demonstrate an optical amplification of organic dye within a TiO2 inverse-opal (IO) distributed feedback (DFB) reflector prepared by a slide-coating method. Highly reflective TiO2 IO film was fabricated by slide coating the binary aqueous dispersions of polystyrene microspheres and charge-stabilized TiO2 nanoparticles on a glass slide and subsequently removing the polymer-opal template. TiO2...

متن کامل

Label-free sensors based on perylenediimide-doped polystyrene distributed feedback lasers

Distributed feedback (DFB) laser sensors with active films consisting of a highly efficient and photostable perylenediimide dye (perylene orange, PDI-O) dispersed in polysytrene (PS), used as passive matrix, are reported. PDIdoped-PS DFB lasers show an excellent operational durability under ambient conditions, superior to those of previously reported DFBs used for sensing purposes. Their bulk r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017